首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1862篇
  免费   181篇
  国内免费   230篇
电工技术   6篇
综合类   115篇
化学工业   558篇
金属工艺   661篇
机械仪表   64篇
建筑科学   14篇
矿业工程   36篇
能源动力   16篇
轻工业   26篇
水利工程   2篇
石油天然气   12篇
武器工业   23篇
无线电   62篇
一般工业技术   520篇
冶金工业   144篇
原子能技术   4篇
自动化技术   10篇
  2024年   4篇
  2023年   32篇
  2022年   44篇
  2021年   52篇
  2020年   56篇
  2019年   39篇
  2018年   38篇
  2017年   58篇
  2016年   40篇
  2015年   50篇
  2014年   64篇
  2013年   74篇
  2012年   89篇
  2011年   107篇
  2010年   105篇
  2009年   132篇
  2008年   88篇
  2007年   153篇
  2006年   138篇
  2005年   107篇
  2004年   99篇
  2003年   83篇
  2002年   87篇
  2001年   95篇
  2000年   69篇
  1999年   47篇
  1998年   58篇
  1997年   48篇
  1996年   55篇
  1995年   39篇
  1994年   39篇
  1993年   32篇
  1992年   19篇
  1991年   13篇
  1990年   12篇
  1989年   5篇
  1988年   2篇
  1981年   1篇
排序方式: 共有2273条查询结果,搜索用时 15 毫秒
1.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
2.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
3.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
4.
High quality zirconia whiskers have been successfully prepared by molten salt method, using zirconium oxychloride (ZrOCl2·8H2O) and sodium phosphate tribasic dodecahydrate (Na3PO4·12H2O) as precursor and molten salt, respectively. The effects of types of molten salt and heat treatment temperature on the formation of zirconia whiskers were characterized by XRD, Raman, DTA-TG, FE-SEM, TEM, SAED and HR-TEM. When Na3PO4·12H2O is utilized as molten salt and the heat treatment temperature is 900?°C, the as-prepared zirconia whiskers with length ranging from 4?µm to 8?µm show an average aspect ratio of 25. The obtained ZrO2 whiskers with monoclinic structure are elongated along [010] direction and exhibit a smooth surface with no distinct defects. The XRD and Raman results reveal that the phase transformation from tetragonal zirconia to monoclinic zirconia occurs with the increased crystal size and the water quenching treatment can significantly reduce the content of sodium zirconium phosphate [Na9–4×Zrx(PO4)3] in the final product. The growth mechanism of zirconia whiskers is supposed to be a dissolution-precipitation process. Since the sodium zirconium phosphate [Na9–4×Zrx(PO4)3] effectively promotes the dissolution of zirconia in liquid molten salt, zirconia can grow into zirconia whiskers according to its anisotropy.  相似文献   
5.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
6.
《Ceramics International》2020,46(15):23544-23555
This investigation aimed to study the influence of carbon black on the qualifications of TiC-based materials. For this objective, two samples, namely monolithic TiC and TiC-5 wt% carbon black were sintered by spark plasma sintering (SPS) method at 1900 °C. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the as-sintered samples. Introducing carbon black enhanced the relative density of TiC significantly, reaching a near fully dense substance. Phase analysis and microstructural studies manifested the formation of non-stoichiometric TiCx in both ceramics. Although the introduction of carbonaceous additive considerably increased the thermal conductivity and flexural strength of TiC, standing at 25.1 W/mK and 658 MPa, respectively, its influence on the Vickers hardness was trivial (both ~ 3200 HV0.1 kg). Finally, the composite specimen presented a lower coefficient of friction (~ 0.31) on average compared to the undoped TiC (~ 0.34).  相似文献   
7.
《Ceramics International》2020,46(3):2670-2676
In this study, the effect of Fe content on the abrasion behavior of TiC–Fe nanocomposite coatings applied on the CK45 steel substrate by air plasma spray method was investigated. For this purpose, milled TiC powder was prepared at 1, 2, 3 and 4 h milled TiC powder for 4 h was selected as the suitable sample. In the next step, a suitable sample mixture with different iron powder concentrations of 5, 10, 15, 20 and 25% was prepared by mechanical milling. The granulated mixture was applied to the substrate using air plasma spray technique. Microstructural and phase analyzes were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). According to the results of Williamson-Hall calculations, the TiC crystallites' size decreased by 49 nm–29 nm, and network strain reached 0.16% by increasing milling time from 1 h to 4 h. Studies have shown that the coatings contain titanium carbide, iron oxide, and titanium oxide, with the number of phases formed depending on the amount of iron in the chemical composition. Investigation of the tribological properties of the coating layer showed that with increased iron content in the coating, the wear resistance of the samples is reduced. Hardness tests on coatings indicate that adding iron to nanocomposite from 5 to 25% reduces hardness from 1025 to 699 Hv. It can be argued that a slight increase in the adhesion strength of the coating to the substrate is due to increased wettability because of the formation of molten iron in the coating.  相似文献   
8.
C-SiC composite powders were prepared by salt-assisted synthesis from Si powders, graphite, and a molten salt medium (NaCl and NaF) with the molar ratio of Si/C =?1/2 at 1300?°C for 3?h. After the C-SiC composite powders part and complete replacement of the graphite, the mechanical properties, oxidation resistance and slag-corrosion resistance of the Al2O3-C materials were studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), as well as with dedicated equipment. The results indicated that SiC whiskers, with lengths of 10–50?nm, formed on the surface of the flake graphite, and the activation energy of oxidation of the C-SiC composite powder increased by 45.72?kJ?mol?1 as compared to that of flake graphite. Furthermore, the decarburization area and slag erosion area of the Al2O3-C material decreased after 3?wt% of C-SiC composite powder was substituted for the flake graphite. Meanwhile, the cold modulus of rupture was maintained when 3?wt% of C-SiC composite powder was added. This improved both the oxidation and slag resistance of the Al2O3-C materials.  相似文献   
9.
A novel mullite-bonded SiC-whisker-reinforced SiC matrix composite (SiCw/SiC, SiC whisker-to-SiC powder mass ratio of 1:9) was designed and successfully prepared. Before preparing the composite, the inexpensive lab-made SiCw was first modified by an oxidation/leaching process and then coated with Al2O3. The kinetics results indicate that the oxidation process can be described by improved shrinking-cylinder models. The aspect ratio of SiCw improved after modification. Subsequently, raw materials with a SiC–SiO2–Al2O3 triple-layered structure were obtained after the Al2O3-coating process and used as feedstocks during the subsequent hot-pressing sintering. Finally, the characterization of the composites indicates that the mullite-bonded sample performs better (relative density of 93.8?±?1.4%, flexural strength of 533.3?±?18.2?MPa, fracture toughness of 13.6?±?2.1?MPa?m1/2, and Vickers hardness of 20.6?±?2.5?GPa) than the reference sample without the mullite interface. The improved toughness could essentially be attributed to the moderately strong interface bonding and effective load transfer effects of the mullite interface.  相似文献   
10.
《Ceramics International》2020,46(2):2033-2040
Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP) composites with various TiC contents were successfully synthesized via a modified hydrothermal-assisted sol-gel method. Fine precursor powders can be obtained with high crystallinity, nanoscale grain size and uniform morphology. SEM images of the ceramic products show that TiC particles are distributed homogeneously in the final Y-TZP matrix, and their average grain sizes are approximately 390–670 nm and 150–230 nm for the Y-TZP and TiC phases, respectively. A higher TiC volume fraction has a negative effect on the relative density and hardness but a significant positive influence on electrical conductivity. The electrical conductivity values are increased from 115 S/m to 1.23 × 105 S/m with TiC contents varying, demonstrating that the percolation threshold is approximately as low as 11.6 vol% for the samples, which is much lower than those of previous Y-TZP/TiC ceramics. The high electrical performance is probably due to the high D (the diameters of the insulating particles)/d (the diameters of conductive particles) ratio and submicron-sized grains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号